Table of contents Related Work Micro-environment Recognition Model Experiments Conclusion

Micro-environment Recognition in the context of Environmental Crowdsensing

Mohammad Abboud, <u>Hafsa El Hafyani</u>, Jingwei Zuo, Karine Zeitouni and Yehia Taher

DAVID Lab UVSQ - Université Paris-Saclay Versailles, France

Micro-environment Recognition in the context of Environmental Crowdsensing

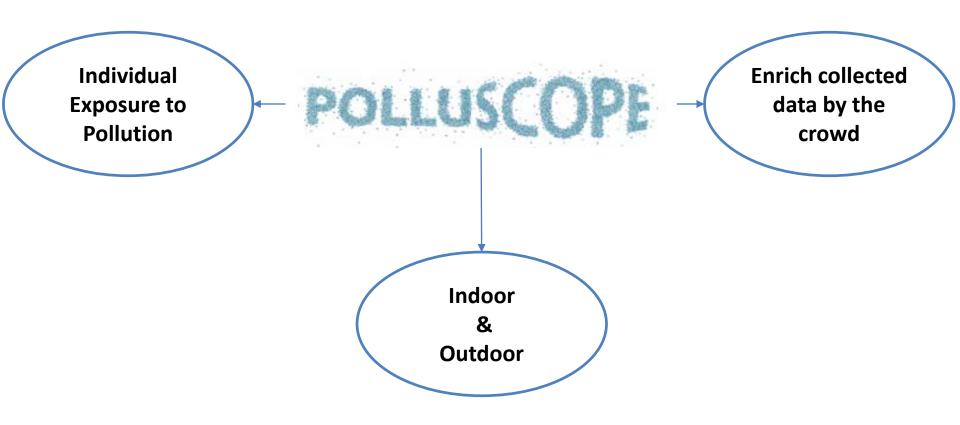
When Mobile Crowd Sensing meets Big Data

- Widespread use of GPS and other built-in sensors.
- Emerging portable environmental sensors.

--> Mobile Crowd Sensing (MCS) is a new paradigm for the collection of spatiotemporal data series.

Air quality monitoring is a typical example

General Objectives



Context

- The recruited participants collect air quality measurements such as Particulate Matters, NO2, Black Carbon, Temperature and Humidity.
- Data acquisition is based on a sensor kit and a mobile device.
- Mobile Apps are used to collect GPS logs and the micro-environment of the participant (also called self-reporting) of the participant

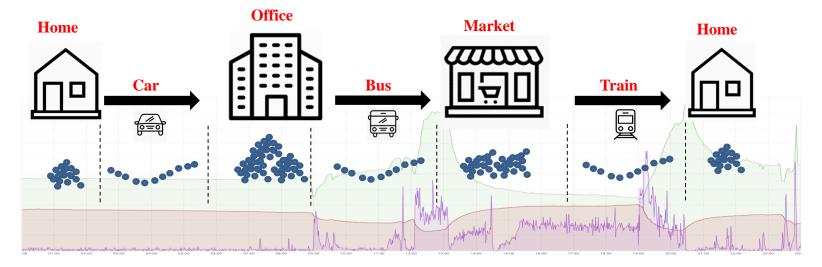
Problem Statement & Objectives

Problems :

- the context annotation is by far the most difficult information to collect in a real-life application setting.
- Not all the participants thoroughly annotate their **micro-environment**.

Ambient air observations strongly depend on the context.

Objective: Automatically detect the participants contexts.



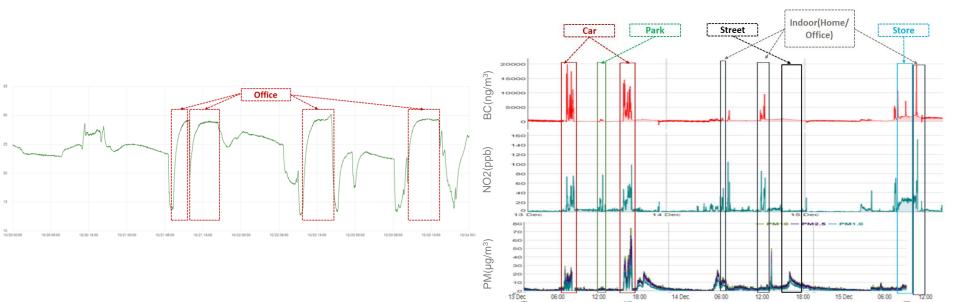
Mohammad Abboud et al.

Micro-environment Recognition in the context of Environmental Crowdsensing

Problem Statement & Objectives

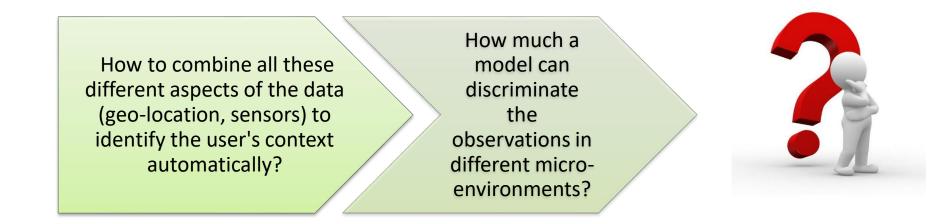
Micro-environments **preserve** a certain pattern.

Inter-sensor correlation



Main Contributions

Multi-variate time series collected by the MCS campaigns not only depend on the microenvironment but could be a proxy of it..



Contribution: Evaluate different approaches and provide a framework for micro-environment recognition

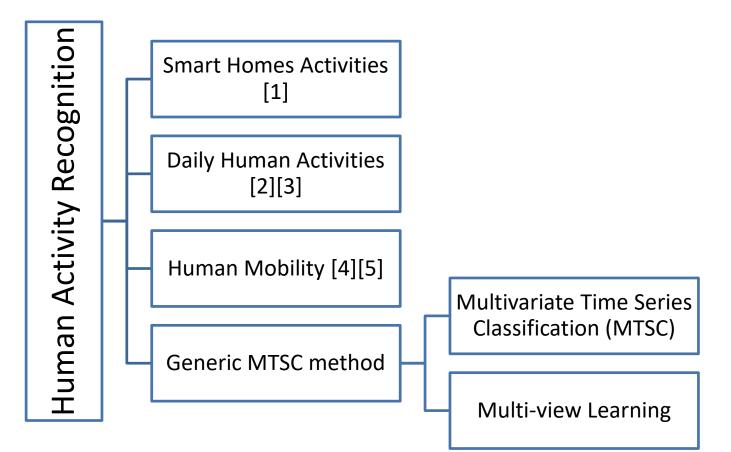
Outline

I. State-of-the-art

II. Micro-Environment Recognition Model

- II.1 Data PreparationII.2 Multi-view Approach
- **III.** Experimental Results
- **IV. Conclusion & Perspectives**

I. State-of-the-art



[1] Aminikhanghahi et Cook 2019. Enhancing activity recognition using CPD-based activity segmentation.

[2] Zhang et Sawchuk 2012. Motion primitive-based human activity recognition using a bag-of-features approach.

[3] Cho et Yoon 2018. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening.

[4] Do et Gatica-Perez 2014. The Places of Our Lives: Visiting Patterns and Automatic Labeling from Longitudinal Smartphone Data.

[5] Zheng et al. 2008. Understanding mobility based on GPS data.

I. State-of-the-art

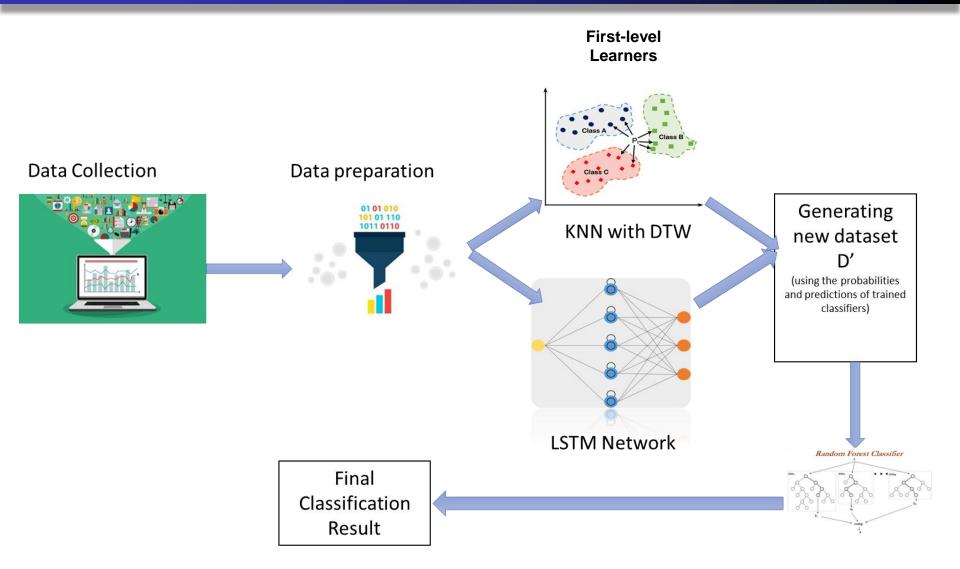
MTSC: labelling data segments with the type of activity

- Distance-based methods [6].
- Feature-based methods [7].
- Ensemble methods [8].
- Deep learning methods [9]
 - MLSTM-FCN [10].

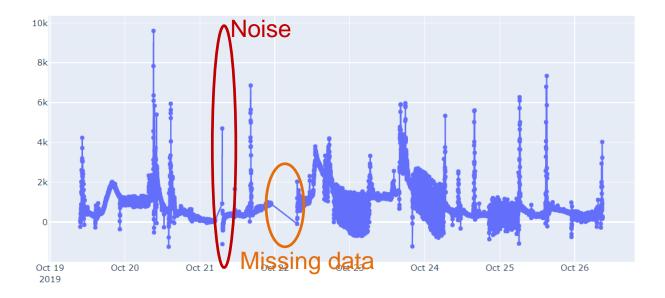
Multi-view Learning: classify time series data originated from multiple sensors

- Authors in [8] proposed a multi-view stacking generalization approach for fusing audio and accelerometer sensor data for human activity recognition.
- Discriminative Bilinear Projection Approach was proposed by [11].
- [6] Berndt et Clifford 1994. Using dynamic time warping to find patterns in time series.
- [7] Pärkkä et al. 2006. Activity classification using realistic data from wearable sensors.
- [8] Garcia-Ceja, Galván-Tejada, et Brena 2018. Multi-view stacking for activity recognition with sound and accelerometer data.
- [9] Fawaz et al. 2019. Deep learning for time series classification: a review.
- [10] Karim et al. 2019. Multivariate LSTM-FCNs for Time Series Classification.
- [11] Li, Li, et Fu 2016. Multi-View Time Series Classification: A Discriminative Bilinear Projection Approach.

II. Micro-Environment Recognition Model

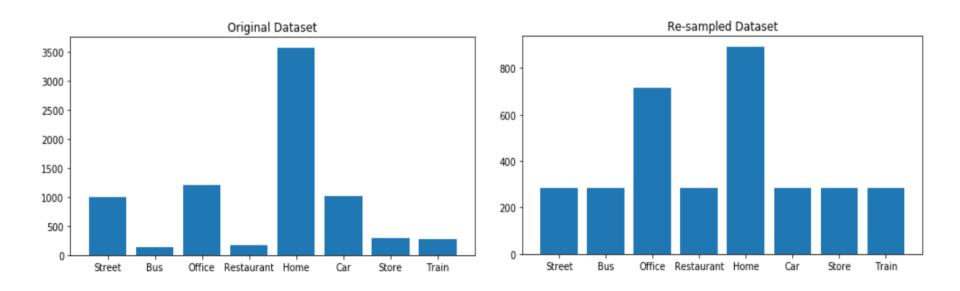


- Data pre-processing: data de-noising (including GPS) & missing data imputation.
- 8 indoor or outdoor activities to recognize : Home, Office, Street, Restaurant, Bus, Car, Store and Train.
- Splitting data into samples of at most 10 min length.



Imbalanced Data

- Indoor activities (mainly "Home" and "Office") are the majority classes (participants spent more time in these micro-environments).
- Resampling strategy: smooth the imbalanced data using random over/undersampler.



II.2. Our Approach

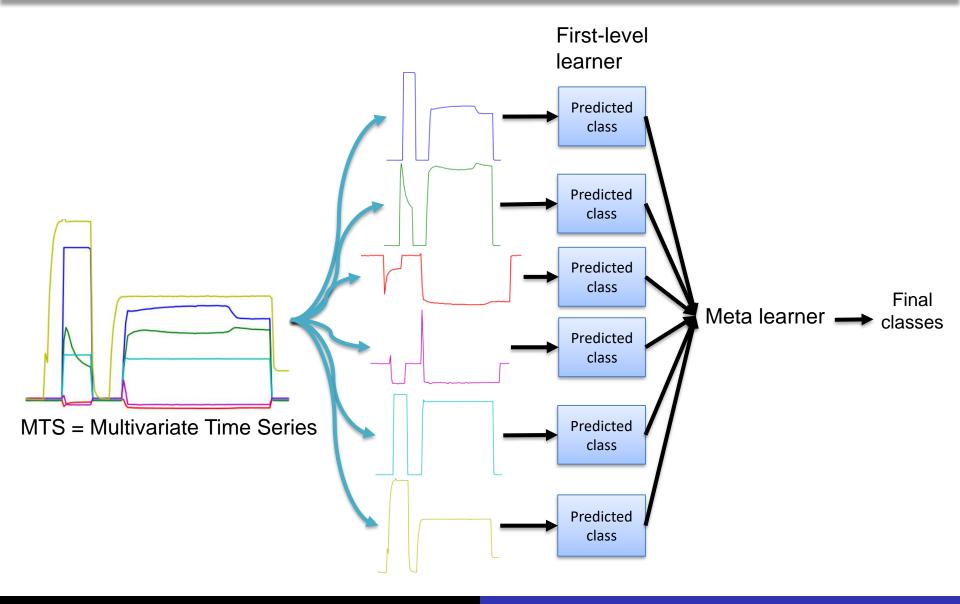
We used a multi-view stacking generalization[8] approach.

We train a model for each view (KNN with DTW).

Combine the results by training a meta-learner classifier.

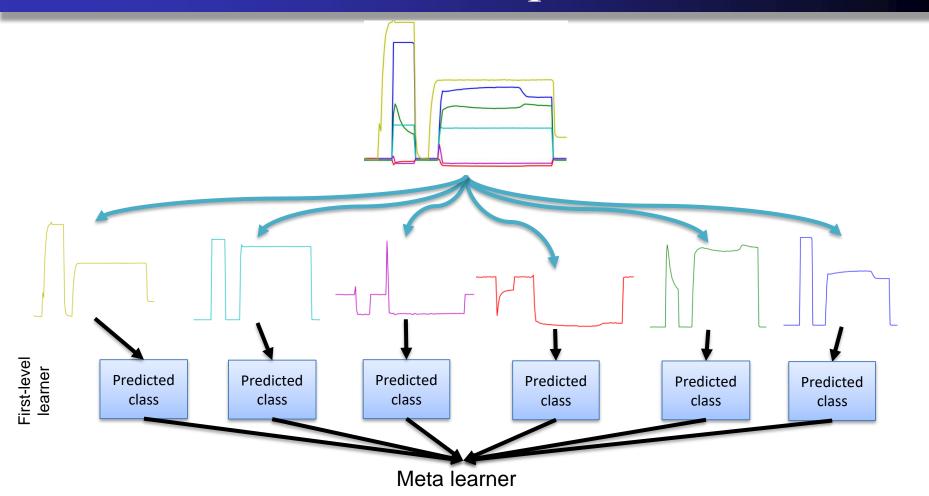
[8] Garcia-Ceja, Galván-Tejada, et Brena 2018. Multi-view stacking for activity recognition with sound and accelerometer data.

II.2. Our Approach



- Environmental crowd sensing data collected over 7 days by data six participants who have thoroughly annotated their activities within the campaign.
 - 70% of data is used for training.
 - 30% of data is used for testing.

III. Meta Learner's Output



Temperature Prediction	Humidity Prediction	NO2 Prediction	BC Prediction	PM1.0 Prediction	PM2.5 Prediction	PM10 Prediction	Speed Prediction	Temperature Prediction	Prediction						Speed Prediction Probability	True Label
3	5	5	3	5	5	5	5	0.28	0.44	0.64	0.51	0.41	0.48	0.6	0.65	5
5	1	1	8	1	1	1	8	0.56	0.61	0.41	1	0.71	0.77	0.65	0.48	8

Mohammad Abboud et al.

Micro-environment Recognition in the context of Environmental Crowdsensing

III. Experimental Results

Baselines:

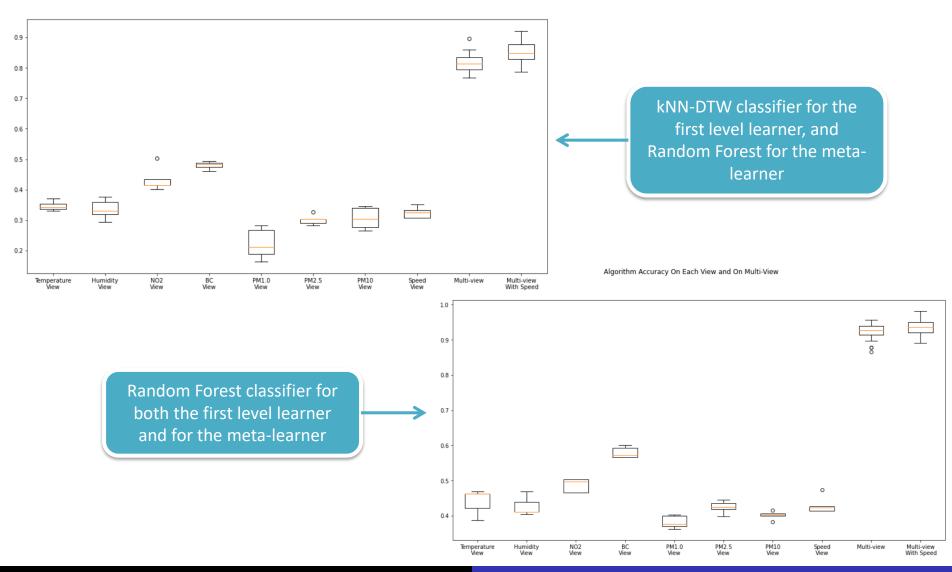
- kNN classifier with DTW metric (2NN-DTW), as state-of-the-art technique.
- We implemented MLSTM-FCN [10], as it is a multi-variate time series classifier.
- 2 Multi-view Based: our proposed approach.

Model	Condition	Accuracy
	Speed	0.450
kNN-DTW	No speed	0.440
KININ-D'I W	Speed & Re-smp.	0.587
	No speed & Re-smp.	0.597
	Speed	0.716
Multi-view Based	No speed	0.710
Multi-view Dased	Speed & Re-smp.	0.729
	No speed & Re-smp.	0.640
	Speed	0.808
MLSTM-FCN	No speed	0.784
MLD INFTCIN	Speed & Re-smp.	0.703
	No speed & Re-smp.	0.691

[10] Karim et al. 2019. Multivariate LSTM-FCNs for Time Series Classification.

III. Experimental Results

Algorithm Accuracy On Each View and On Multi-View



Micro-environment Recognition in the context of Environmental Crowdsensing

III. Experimental Results (kNN+RF)

250

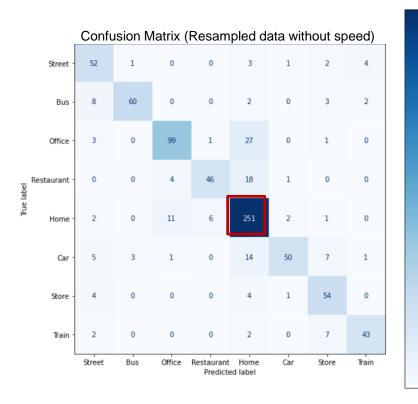
- 200

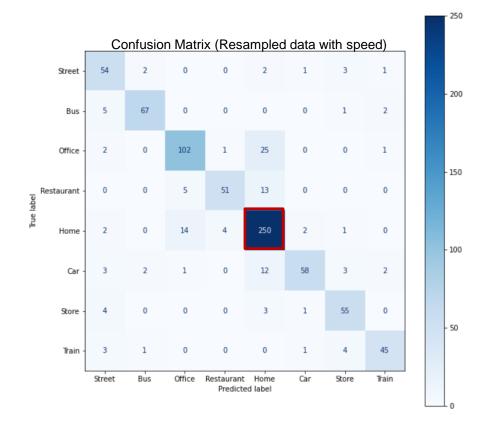
- 150

100

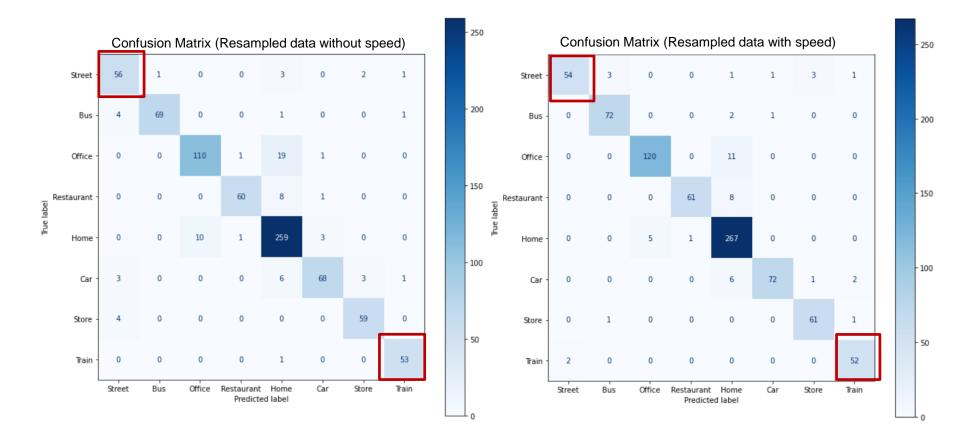
50

0





III. Experimental Results (RF+RF)



III. Experimental Results

Our approach (kNN+RF)

Precision	Recall	F Score
0.684	0.825	0.748
0.938	0.800	0.863
0.861	0.756	0.805
0.868	0.667	0.754
0.782	0.919	0.845
0.909	0.617	0.735
0.720	0.857	0.783
0.860	0.796	0.827
	0.684 0.938 0.861 0.868 0.782 0.909 0.720	0.684 0.825 0.938 0.800 0.861 0.756 0.868 0.667 0.782 0.919 0.909 0.617 0.720 0.857

Our	ap	proach ((RF+RF)
-----	----	----------	---------

Class	Precision	Recall	F Score
Street	0.836	0.889	0.862
Bus	0.986	0.920	0.952
Office	0.917	0.840	0.876
Restaurant	0.968	0.870	0.916
Home	0.872	0.949	0.909
Car	0.932	0.840	0.883
Store	0.922	0.937	0.929
Train	0.946	0.981	0.964

Class	Precision	Recall	F Score
Street	0.964	0.857	0.908
Bus	0.947	0.960	0.954
Office	0.960	0.916	0.938
Restaurant	0.984	0.884	0.931
Home	0.905	0.978	0.940
Car	0.973	0.889	0.929
Store	0.938	0.968	0.953
Train	0.929	0.963	0.945

Class	Precision	Recall	F Score
Street	0.740	0.857	0.794
Bus	0.931	0.893	0.912
Office	0.836	0.779	0.806
Restaurant	0.911	0.739	0.816
Home	0.820	0.916	0.865
Car	0.921	0.716	0.806
Store	0.821	0.873	0.846
Train	0.882	0.833	0.857

Mohammad Abboud et al.

Micro-environment Recognition in the context of Environmental Crowdsensing

III. Our Approach vs MLSTM

Our approach (RF+RF)

Class	Precision	Recall	F Score
Street	0.836	0.889	0.862
Bus	0.986	0.920	0.952
Office	0.917	0.840	0.876
Restaurant	0.968	0.870	0.916
Home	0.872	0.949	0.909
Car	0.932	0.840	0.883
Store	0.922	0.937	0.929
Train	0.946	0.981	0.964

MLSTM-FCN

Class	Precision	Recall	F Score
Street	0.93	0.89	0.91
Bus	0.93	0.99	0.95
Office	0.78	0.74	0.76
Restaurant	0.81	0.62	0.70
Home	0.84	0.90	0.87
Car	0.95	0.95	0.95
Store	0.95	1.00	0.98
Train	0.96	0.96	0.96

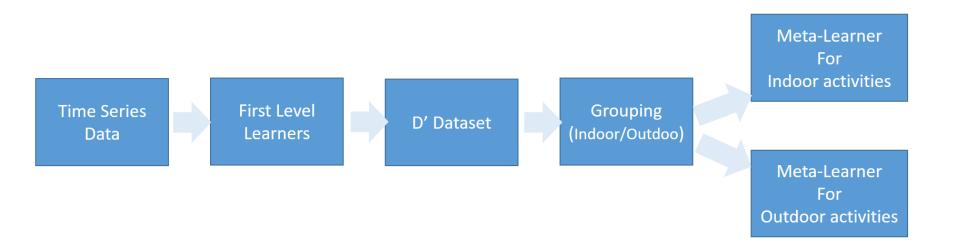
Class	Precision	Recall	F Score
Street	0.964	0.857	0.908
Bus	0.947	0.960	0.954
Office	0.960	0.916	0.938
Restaurant	0.984	0.884	0.931
Home	0.905	0.978	0.940
Car	0.973	0.889	0.929
Store	0.938	0.968	0.953
Train	0.929	0.963	0.945

Class	Precision	Recall	F Score
Street	0.86	0.90	0.88
Bus	0.95	0.93	0.93
Office	0.82	0.69	0.75
Restaurant	0.80	0.62	0.70
Home	0.81	0.88	0.84
Car	0.89	0.93	0.91
Store	0.94	0.98	0.96
Train	0.92	1.00	0.96

Micro-environment Recognition in the context of Environmental Crowdsensing

Grouping Step

- The classifier can strongly discriminate between the types indoor and outdoor but it may fail in classifying the micro-environments.
- We proposed a new step: classify data into indoor and outdoor, and then discriminate between the micro-environments.



Grouping Step Results (kNN+RF)

This approach performed a higher accuracy on resampled data.

Resampled data without speed

Class	Precision	Recall	F Score
Streer	0.74	0.82	0.78
Bus	0.93	0.89	0.91
Office	0.86	0.76	0.81
Restaurant	0.87	0.72	0.79
Home	0.85	0.93	0.89
Car	0.97	0.87	0.92
Store	0.93	0.95	0.94
Train	0.86	0.92	0.89

Resampled data with speed

Class	Precision	Recall	F Score
Streer	0.89	0.90	0.89
Bus	0.92	0.92	0.92
Office	0.86	0.79	0.82
Restaurant	0.89	0.76	0.82
Home	0.87	0.93	0.90
Car	0.97	0.90	0.93
Store	0.96	0.98	0.97
Train	0.89	0.98	0.93

Grouping Step Results (RF+RF)

This approach performed a higher accuracy on resampled data.

Resampled data without speed

Resampled data with speed

Class	Precision	Recall	F Score
Street	0.84	0.87	0.85
Bus	0.88	0.89	0.88
Office	0.94	0.92	0.93
Restaurant	1.00	0.88	0.93
Home	0.94	0.98	0.96
Car	0.98	0.90	0.94
Store	0.98	0.98	0.98
Train	0.87	0.94	0.91

Class	Precision	Recall	F Score
Street	0.96	0.90	0.93
Bus	0.92	0.97	0.94
Office	0.96	0.90	0.93
Restaurant	1.00	0.84	0.91
Home	0.90	0.98	0.94
Car	0.98	0.98	0.98
Store	0.98	0.95	0.96
Train	0.96	0.96	0.96

Our Approach vs MLSTM

Grouping Step (RF+RF)

MLSTM-FCN

Class	Precision	Recall	F Score
Street	0.96	0.90	0.93
Bus	0.92	0.97	0.94
Office	0.96	0.90	0.93
Restaurant	1.00	0.84	0.91
Home	0.90	0.98	0.94
Car	0.98	0.98	0.98
Store	0.98	0.95	0.96
Train	0.96	0.96	0.96

Class	Precision	Recall	F Score
Street	0.86	0.90	0.88
Bus	0.95	0.93	0.93
Office	0.82	0.69	0.75
Restaurant	0.80	0.62	0.70
Home	0.81	0.88	0.84
Car	0.89	0.93	0.91
Store	0.94	0.98	0.96
Train	0.92	1.00	0.96

- We show that the ambient air can characterize the microenvironment.
- ²By using the mobility feature, the accuracy improves slightly though the gain is moderate.
- ³ We have compared the results with kNN-DTW and MLSTM-FCN classifiers which were considered as the baseline.

- Use various algorithms for the first level learner and the meta learner, as multi-view learning is flexible.
- Explore the application of semi-supervised learning to cope with the lack of labels for some classes.
- Improve the performance of the learned classes by integrating some a priori rules (e.g. the unlikelihood of being in some microenvironment at some time of day).

Thank you for your attention!